
Writing Maintainable Automated
Acceptance Tests

Dale H. Emery
dale@dhemery.com
http://dhemery.com

This article was originally presented, under a slightly different
name, as part of the Agile Testing Workshop at Agile Development
Practices 2009. I’ve made a few minor changes.

Test Automation is Software Development
Test automation is software development1. This principle implies that much of what we know
about writing software also applies to test automation. And some of the things we know may not
be apparent to people with little or no experience writing software.

Much of the cost of software development is maintenance—changing the software after it is
written. This single fact accounts for much of the difference between successful and unsuccessful
test automation efforts. I’ve talked to people in many organizations that attempted test
automation only to abandon the effort within a few months. When I ask what led them to
abandon test automation, the most common answer is that the tests quickly became brittle and
too costly to maintain. The slightest change in the implementation of the system—for example,
renaming a button—breaks swarms of tests, and fixing the tests is too time consuming.

But some organizations succeed with test automation. Don’t they experience maintenance costs,
too? Of course they do. An important difference is that where unsuccessful organizations are
surprised by the maintenance costs, successful organizations expect them. The difference
between success and failure is not the maintenance costs per se, but whether the organization
expects them. Successful organizations understand that test automation is software development,
that it involves significant maintenance costs, and that they can and must make deliberate,
vigilant effort to keep maintenance costs low.

The need to change tests comes from two directions: changes in requirements and changes in the
system’s implementation. Either kind of change can break any number of automated tests. If the
tests become out of sync with either the requirements or the implementation, people stop running
the tests or stop trusting the results. To get the tests back in sync, we must change the tests to
adapt to the new requirements or the new implementation.

If we can’t stop requirements and implementations from changing, the only way to keep the
maintenance cost of tests low is to make the tests adaptable to those kinds of changes.

Agile Development Practices 2009! 1

1 I learned this idea from Elisabeth Hendrickson, an extraordinary tester.

http://dhemery.com
http://dhemery.com

Developers have learned—often through painful experience—that two key factors make code
difficult to change: Incidental details and duplication. You don’t want to learn this the hard way.

Acceptance Tests and System Responsibilities
An acceptance test investigates a system to determine whether it correctly implements a given
responsibility. The essence of an acceptance test is the responsibility it investigates, regardless of
the technology used to implement the test.

Suppose we are testing a system’s account creation feature. The create command creates a
new account, given a user name and a password. One of the account creation feature’s
responsibilities is to validate passwords. That is, it must accept valid passwords and reject
invalid ones. To be valid, a password must be from 6 to 16 characters long and include at least
one letter, at least one digit, and at least one punctuation character. If the submitted password is
valid, the create command creates the account and reports Account Created. If the password is
invalid, the create command refrains from creating the account and reports Invalid Password.

That’s the essence of the responsibility. No matter how the system is implemented—whether as a
web app, a GUI app, a set of commands to be executed on the command line, or a guy named
Bruce wielding a huge pair of scissors to snip off the fingers of anyone who submits an invalid
password—the system must implement that responsibility.

Incidental Details
Listing 1 shows a poorly written automated acceptance test2 for the create command’s
password validation responsibility.

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 2

2 The examples presented here run within Robot Framework, an increasingly popular test automation tool that
allows you to write tests in a variety of formats. As you will see, Robot Framework offers techniques to write clear,
maintainable tests. Robot Framework is free and open source. See http://code.google.com/p/robotframework/ for
further information.

http://www.dhemery.com
http://www.dhemery.com
http://code.google.com/p/robotframework/
http://code.google.com/p/robotframework/

This test has numerous problems, the most obvious being that it is hard to understand. We can
see from the second line—the name of the test—that it tests the create command’s validation
responsibility. But it’s hard to make sense of the details of the test among the flurry of words and
“syntax junk” such as dollar signs and braces.

With a little study we can pick out the passwords—such as 1234!@$^. And with a little more
study we might notice that some passwords lead to a status of Invalid Password and others
lead to Account Created. On the other hand, we might just as easily not notice that, because
the connection between passwords and statuses is buried among the noise of the test. What do
dollar signs, braces, and the words Run, Ruby, and fred have to do with passwords and
validation? Nothing. Those are all incidental details, details required only because of the way
we’ve chosen to implement the system and the test.

Incidental details destroy maintainability. Suppose our security analysts remind us that six-
character passwords are inherently insecure. So we change one of the key elements of the
responsibility, increasing the minimum length of a password from six to ten. Given this change
in requirements, what lines of this test would have to change, and how? It isn’t easy to see at a
glance.

Let’s consider a more challenging requirements change. We want system administrators to be
able to configure the minimum and maximum password length for each instance of the system.
Now which lines of the test would have to change? Again, the answer isn’t easy to see at a
glance.

That’s because the test does not clearly express the responsibility it is testing. When we cannot
see the essence of a test, it’s more difficult and costly to understand how to change the test when
the system’s responsibilities change. Incidental details increase maintenance costs.

Listing 1: A poorly written acceptance test

** Test Cases **
The create command validates passwords
 ${status}= Run ruby app/cli.rb create fred 1234!@$^
 Should Be Equal ${status} Invalid Password
 ${status}= Run ruby app/cli.rb create fred abcd!@$^
 Should Be Equal ${status} Invalid Password
 ${status}= Run ruby app/cli.rb create fred abcd1234
 Should Be Equal ${status} Invalid Password
 ${status}= Run ruby app/cli.rb create fred !2c45
 Should Be Equal ${status} Invalid Password
 ${status}= Run ruby app/cli.rb create fred !2c456
 Should Be Equal ${status} Account Created
 ${status}= Run ruby app/cli.rb create fred !2c4567890123456
 Should Be Equal ${status} Account Created
 ${status}= Run ruby app/cli.rb create fred !2c45678901234567
 Should Be Equal ${status} Invalid Password

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 3

http://www.dhemery.com
http://www.dhemery.com

So the first step toward improving maintainability is to hide the incidental details, allowing us to
more easily see the essence of the test. In this test, most of the details are about how to invoke
the create command. This system is implemented as a set of command line commands,
written in the Ruby programming language. The first highlighted line in the test tells Robot
Framework to run the computer’s Ruby interpreter, telling it to run the app/cli.rb (the
system we’re testing), and telling it in turn to run its create command with the user name
fred and the password 1234!@$^. And at the end of it all, Robot Framework stuffs the
create command’s output in a variable called ${status} Whew!

The highlighted second line is easier to understand—it compares the returned status to the
required status Invalid Password—but it’s awkwardly worded and includes distracting
syntax junk, a form of incidental detail.

Robot Framework allows us to extract details into keywords, which act like subroutines for our
tests. A keyword defines how to execute a step in an automated test.

So let’s create a keyword to hide some of the incidental details.

One useful approach is to ask yourself: How would I write that first step if I knew nothing about
the system’s implementation? Even if I knew nothing about the system’s implementation, I know
it has the responsibility to create accounts—that’s the feature we’re testing, after all. So I know it
will offer the user some way to create an account. Create Account, then, is an essential element
of the system’s responsibilities. I also know (from other requirements) that in order to create an
account, the user must submit a user name and a password.

Given all of that, I might write the test step like this:
! Create Account fred 1234!@$^

I still have some concerns with this test step3, but I’ll deal with those later.

Now let’s look at the second highlighted step. It seems to be verifying that the create
command returned the appropriate status: Invalid Password. How might I rewrite this step if I
knew nothing about the system’s implementation? Here’s one possibility:
! Status Should Be Invalid Password

So together, those two steps now look like this:
! Create Account fred 1234!@$^
! Status Should Be Invalid Password

That’s much clearer. Without all of the incidental details, it’s easier to spot the connection
between the two lines: The system must tells us that the given password is invalid.

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 4

3 My first concern: What’s fred doing there? That’s a user name. I’ve given a user name because the Create
Account command (however it’s implemented) requires a user name. Still, the user name has no bearing on
password validation, so it’s extraneous for this test. My second concern is that it isn’t immediately obvious what’s
significant about that specific password.

http://www.dhemery.com
http://www.dhemery.com

Now if we try to run the test, it will fail, because Robot Framework doesn’t know the meaning of
Create Account or Status Should Be. We haven’t defined those keywords yet. Let’s
do that now:

The highlighted line introduces a new keyword called Create Account, and describes it as
taking two pieces of information as input—a user name and a password. The next two lines tell
Robot Framework how to execute the keyword. Notice that the first indented line looks a lot like
the first highlighted line of our original test. This is where we hid the incidental details.

You may also notice that we introduced yet more syntax junk, yet more dollar signs and braces.
How is this an improvement? The benefit is this: By extracting all of the incidental details out of
the test steps and into the keyword, we’ve cleaned up our test steps, making them easier to
understand. The benefit becomes more apparent if we rewrite all of our test steps using the new
keywords:

Now our test reads much more cleanly. At the expense of a little bit of syntax awkwardness in
the keyword definition, we’ve gained a lot of clarity in the test. It’s a tradeoff well worth making.

Listing 2: Keywords to create an account and check the status

** Keywords **
Create Account ${user_name} ${password}
 ${status}= Run ruby app/cli.rb create ${user_name} ${password}
 Set Test Variable ${status}

Status Should Be ${required_status}
 Should Be Equal ${status} ${required_status}

Listing 3: The test rewritten to remove incidental details

** Test Cases **
The create command validates passwords
 Create Account fred 1234!@$^
 Status Should Be Invalid Password
 Create Account fred abcd!@$^
 Status Should Be Invalid Password
 Create Account fred abcd1234
 Status Should Be Invalid Password
 Create Account fred !2c45
 Status Should Be Invalid Password
 Create Account fred !2c456
 Status Should Be Account Created
 Create Account fred !2c4567890123456
 Status Should Be Account Created
 Create Account fred !2c45678901234567
 Status Should Be Invalid Password

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 5

http://www.dhemery.com
http://www.dhemery.com

Duplication
So far we’ve improved the test noticeably by extracting incidental details into reusable
keywords. But there are still problems. One, mentioned earlier, is the troublesome fred in every
other step. A bigger problem is duplication. Every pair of lines submits an interesting password
and verifies that the system emits the appropriate status message. From one pair to the next, only
two things change: the password and the desired status. Everything else stays the same.
Everything else is duplicated from one pair to the next.

Duplication destroys maintainability. Suppose our usability analysts remind is that none of our
other systems ask users to create an account. Instead, they ask users to register. So the language
of this system—create account—is inconsistent with others. The usability analysts insist, and
now we need to change our system’s terminology.

One possibility is to simply change the name of the command line command from create to
register, and leave our tests the way they are. If we were to do that, then every time we tried to
talk about the acceptance tests with the business folks, we would have to translate between the
language of the tests and the language of the business. That path leads to confusion.

To keep the language consistent, it would be better to change the tests to use the common
terminology. This is where duplication rears its ugly head. We have to scan all of our tests,
identify every mention of create, and change it to register. With our revised test, that’s not
especially onerous. We mention create only ten times—eight4 times in the test and twice in the
keywords. But imagine if we had hundreds of tests5. Duplication increases maintenance costs.

Duplication often signals that some important concept lurks unexpressed in the tests. That’s
especially true when we duplicate not just single steps, but sequences of steps. In our test, we
duplicate pairs of steps—one step in each pair creates an account with a significant password,
and the next checks to see whether the system reported the correct status.

Consider the first two steps in Listing 3. What do they do? What is the essence of those two
steps? Taken together, the verify that the create command rejects the password 1234!@$^.
How about steps nine and ten? Those two steps verify that the create command accepts the
password !2c456. Accept and reject. Those concepts are the essence of the responsibility we’re
testing, yet they’re cowering in the shadows of our test steps.

Let’s make the concepts explicit by creating two new keywords6:

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 6

4 I originally counted only seven occurrences, missing the one in the name of the test. That’s another challenge with
duplication. When you have to change all of the occurrences, it’s easy to miss some.

5 Or count the number of creates in the original test in Listing 1. Notice that by extracting incidental details from the
test into a keyword, we’ve also reduced the number of changes we’d have to make if we switched from create to
register. Bonus!

6 Notice that these new keywords do not depend on any implementation details of the system. They’re built entirely
on our lower-level keywords. If the implementation details change, these keywords will continue to be valid, and
will not require change. Also, I’ve changed the user name from fred to arbitraryUserName to help readers
understand that, for the purpose of this keyword, there’s nothing special about this user name.

http://www.dhemery.com
http://www.dhemery.com

These keywords not only allow us to rewrite our test, they also define the meaning of accepting
and rejecting passwords. To accept a password means that when we try to create an account with
the password, the system reports that the account has been created7. To reject a password means
that when we try to create an account with that password, the system reports that the password is
invalid.

Now we can rewrite our test to reduce the duplication, and also to directly express the essential
responsibility of accepting and rejecting passwords8:

By analyzing duplication in the test, we identified two essential system concepts—the system
accepts valid passwords and rejects invalid ones. By defining keywords, we named those
concepts. Then we rewrote the test to refer to the concepts by name. By putting names to those
concepts, and using the names throughout the test, we made the test more understandable and
thus more maintainable.

Listing 4: Keywords for accepting and rejecting passwords

** Keywords **
Accepts Password ${valid_password}
 Create Account arbitraryUserName ${valid_password}
 Status Should Be Account Created

Rejects Password ${invalid_password}
 Create Account arbitraryUserName ${invalid_password}
 Status Should Be Invalid Password

Listing 5: Test rewritten to reduce duplication

** Test Cases **
The create command validates passwords
 Rejects Password 1234!@$^
 Rejects Password abcd!@$^
 Rejects Password abcd1234
 Rejects Password !2c45
 Accepts Password !2c456
 Accepts Password !2c4567890123456
 Rejects Password !2c45678901234567

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 7

7 In the real world, accepting a password means more than simply reporting that the account was created. In
addition, the system must of course actually create the account. A complete test would verify those essential results,
and not simply take the system’s word that it created the account. Systems lie! I’ve omitted those details to keep the
example small enough to talk about.

8 There is still duplication here. We could reduce it further, perhaps by creating a Rejects Passwords keyword
that takes a list of invalid passwords and checks whether the system rejects each one. Would that make the test
clearer or more maintainable? My guess is no, but it’s worth considering. Try it for yourself and see.

http://www.dhemery.com
http://www.dhemery.com

Naming the Essence
Now that the test more clearly talk about accepting and rejecting passwords, one last bit of
unclarity becomes more apparent. As we look at each invalid password, it isn’t immediately
obvious what’s invalid about it. And what about the valid passwords? Why do we test two
passwords? And why those two? What’s so special about them? With time you could figure out
the answers to those questions. But here’s a key point: Any time spent puzzling out the meaning
and significance of a test is maintenance cost. This may seem like a trivial cost, but multiply that
by however many tests you need to change the next time someone changes a requirement. As
many of my clients have discovered, these “trivial” maintenance costs add up, and they kill test
automation efforts.

As I designed the test, I chose each password for a specific purpose. The essence of each
password is that it tells me something specific that I want to know about the system. Take the
password 1234!@$^ as an example. I chose this password because it is missing one of the
required character types: it contains no letters. The essence of this password is that it lacks
letters.

I’d like to give that essence a name. Robot Framework offers a feature to do that: variables. I can
create a variable, give it an expressive name, and assign it a value that embodies that name.
Here’s how to create a variable:
 ** Variables **
 ${aPasswordWithNoLetters} 1234!@$^

Now I can use that variable in my test. In the interest of space, let’s assume that I’ve created
variables for all of the passwords, each named to express its essence, its significance in the test9:

Now the test is nearly as clear as we can make it. I’ll take one more step, and break the test into
multiple tests, each focused on a particular element of password validation:

Listing 6: Test rewritten to name significant values

** Test Cases **
The create command validates passwords
 Rejects Password ${aPasswordWithNoLetters}
 Rejects Password ${aPasswordWithNoDigits}
 Rejects Password ${aPasswordWithNoPunctuation}
 Rejects Password ${aTooShortPassword}
 Accepts Password ${aMinimumLengthPassword}
 Accepts Password ${aMaximumLengthPassword}
 Rejects Password ${aTooLongPassword}

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 8

9 Yes, using variables does require us include distracting dollar signs and braces in our test. Does the clarity of the
names outweighs the distraction of the syntax junk?

http://www.dhemery.com
http://www.dhemery.com

Now when I read these tests, I can understand at a glance the meaning and significance of each
test and each step. Each important requirements concept is expressed clearly, and expressed
once.

Now suppose we change the requirements for minimum and maximum password length.
Because each requirements concept is expressed clearly in the tests, I can quickly identify which
tests would have to change. And because each concept is defined once—and given a name—I
can quickly change the tests.

Putting the Tests to the Test: A Major Implementation Change
So all of our work has made the tests more adaptable to requirements changes. But how about
implementation changes? To find out, let’s change a few implementation details of the system
and see how our tests fare. By “a few implementation details,” I mean let’s rewrite entire system
as a web app. Now, instead of typing the create command on the command line, users visit the
account creation web page, type the user name and password into text fields on a web form, and
click the Create Account button. And the system, instead of printing the status to the command
line, forwards the user to a web page that displays the status.

The big question: How would our tests have to change?

Remember that earlier we hid many incidental details inside keywords—Create Account
and Status Should Be. Those keywords still contain the arcane steps to issue commands on
the command line. So clearly those keywords will have to change. Let’s rewrite those keywords
to invoke the web app instead of the command line app10:

Listing 7: Test rewritten to name significant values

** Test Cases **
Rejects passwords that omit required character types
 Rejects Password ${aPasswordWithNoLetters}
 Rejects Password ${aPasswordWithNoDigits}
 Rejects Password ${aPasswordWithNoPunctuation}

Rejects passwords with bad lengths
 Rejects Password ${aTooShortPassword}
 Rejects Password ${aTooLongPassword}

Accepts minimum and maximum length passwords
 Accepts Password ${aMinimumLengthPassword}
 Accepts Password ${aMaximumLengthPassword}

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 9

10 These steps use another tool, Selenium, to drive a web browser and to interact with the web app. To start up
Selenium and a browser to run the tests, and to shut down Selenium and the browser after the tests, we have to add
another few geeky lines to our tests. In the interest of staying focused, I won’t include those lines here, but it’s a
grand total of eleven lines of test code.

http://www.dhemery.com
http://www.dhemery.com

Okay, so we’ve changed the keywords that directly interact with the system. And we’ve added
another eleven lines of test code as described in the footnote. What’s next? What else do we have
to change?

Nothing. We’re done.

We’ve changed a few lines of test code, and our tests now run just fine against a new
implementation of the system using entirely changed technology.

Meanwhile, Back in the Real World
In the real world, you will likely have more work to do to respond to such a major
implementation change. For example, you will have to change more than two keywords. But if
you’ve created low-level keywords that isolate the rest of your test code from the details of how
to interact with the system, you will have to change only those low-level keywords. The tests
themselves continue to work, unchanged.

And real world implementation changes may require more radical changes in the tools you use to
run the tests.

But even when that’s true, you can still use modern open source testing tools11 to remove
duplication from your tests, and to write tests that clearly and directly express the essence of the
system responsibilities they are testing.

The bottom line is this: If you write automated tests so that they express system responsibilities
clearly and directly, and if you remove duplication, you will significantly reduce the maintenance
costs that arise from both changes in requirements and changes in system implementation. That
could mean the difference between successful test automation and failure.

Listing 8: Rewriting keywords to invoke the new web app

Create Account ${username} ${password}
 Go To http://localhost:4567/create
 Input Text username ${username}
 Input Text password ${password}
 Submit Form

Status Should Be ${required_status}
 ${status}= Get Text status
 Should Be Equal ${required_status} ${status}

Writing Maintainable Automated Acceptance Tests! Dale H. Emery

http://dhemery.com! 10

11 Though these tests use Robot Framework’s particular test format, many other open source test tools—Fit,
FitNesse, and Cucumber being among the more popular—offer similar ways to express the essence of your tests and
to hide implementation details.

http://localhost:4567/create
http://localhost:4567/create
http://www.dhemery.com
http://www.dhemery.com

